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Abstract—Programming by Demonstration (PbD) enables
users to automate tasks through examples, but traditional sys-
tems generate low-level scripts that are hard to generalize or
reuse. Recent advances in Large Language Models (LLMs) offer
the potential to infer higher-level task structures, but rely on
ambiguous natural language input. We present AgentPbD, a
system that synthesizes task-level agentic workflows from a single
user demonstration. By capturing browser actions and contextual
metadata, AgentPbD automatically infers user goals and inten-
tions, transforming user demonstrations into an editable, modu-
lar LLM agent workflow, and displays it on the browser extension
interface. Users can further review and modify the workflow
through visual programming. We demonstrate how AgentPbD
bridges PbD and LLM planning, enabling interpretable and
generalizable automation of complex web tasks.

Index Terms—End-user programming, Programming by
demonstration, Web automation, LLM agents

I. INTRODUCTION

User demonstrations provide explicit examples of how
users perform tasks, and prior research in Programming by
Demonstration (PbD) has shown its effectiveness in enabling
non-programmers to build task automations [1]–[4]. However,
traditional PbD systems often require multiple demonstrations
from users for disambiguation, and are struggling in generaliz-
ing to similar tasks [5]–[7]. Furthermore, these systems often
focus on generating the program based solely on the user’s
actions, without accounting for the preferences, knowledge,
and behaviors encoded deeper in the demonstration flow, due
to the difficulty of modeling such information with limited
demonstration traces. However, this limitation hinders their
performance on tasks that involve longer steps and more
implicit user goals.

Recent advances in LLMs have demonstrated their strong
capabilities in understanding tasks and user goals [8]. LLM-
based agents are trained on large-scale dataset and en-
hanced by agentic workflows–modular sequences that inte-
grate prompts, operations, and tools. These agents can handle
complex tasks by reasoning about user intent, planning across
multiple steps, and filling in missing details using common-
sense knowledge [9]–[12]. However, current LLM agents rely
heavily on natural language instructions, which are often vague

or underspecified, especially for abstract, multi-step workflows
that are hard to express precisely in language alone [13].

Recognizing the complementary strengths of LLMs and
user demonstrations, we present AGENTPbD, an interactive
system that automatically generates agentic workflows from
a single user demonstration of their workflow on a web
browser. Based on the procedural knowledge embedded in
a task demonstration, AGENTPbD automatically parses the
workflow into inter-connected sub-tasks as a tree structure,
while allowing users to change tool use, modify prompts as
well as reconstruct the workflow logic.

II. RELATED WORKS

Task automation has been widely explored in several PbD
systems [3], [4], [7], [14]–[16]. These systems observe user
demonstrations and generate scripts that replay and generalize
actions across similar website elements. Rousillon [4] renders
these scripts using a Scratch-style syntax, while MIWA [3]
describes script behaviors in natural language. However, these
systems rely on a static record-and-replay strategy, which
limits their generalizability. TaskMind [7] advances this di-
rection by capturing cognitive traces of user actions and
organizing them into flow-based action sequences. Yet, its
execution remains constrained to linear action flows. With the
rise of LLMs, users can now use low-code platforms such
as Dify [17], Coze [18], and n8n [19] to build customized
workflow-based agents with visual, block-based interfaces.
While these tools lower the entry barrier, they still assume
users can manually translate their goals into logical steps
[20]. More recently, automatic agent workflow generation
and optimization methods [9], [21], [22] have been proposed
to synthesize workflows from task requests. However, these
systems are largely confined to closed-domain, static tasks
(e.g., Q&A or math problems) and have yet to address open-
ended, interactive web environments.

III. SYSTEM DESIGN

As shown in Fig. 1, AgentPbD transforms user demonstra-
tions into editable workflows through three stages: collecting
browser actions with context, generating task-level workflows



via a multi-agent backend, and presenting the result in an
interactive tree interface for easy customization. AgentPbD
generates task-level workflows, so that they can be better
generalized in future similar tasks, and users can perceive and
edit high-level, abstract sub-tasks rather than tedious stepwise
actions.

A. User Demonstration Collection

To infer users’ implicit task goals and intentions, we col-
lect a set of common browser actions, including clicks, text
selection, text input, form submissions, and URL navigations.
Alongside each action, we record the contextual metadata,
such as the class, tag, and value attributes of the corresponding
DOM elements, to capture the semantic implications of the
interaction. To avoid user noises of meaningless, repeated
actions, we selectively log meaningful user actions by fil-
tering low-information elements (e.g., background containers,
generic layout divs), postponing event capture to avoid tran-
sient input noise, and recording only finalized interactions with
minimal contextual metadata.

We do not rely on visual cues like element screenshots. In
our observations, textual context provides sufficient semantic
information, while visual models often introduce latency and
complexity (e.g., in systems like Operator). We also omit
full-page content, as we find that action-context pairs are
enough for concise and effective representation of user intent
and attention. By combining user actions with their immedi-
ate structural context, we collect a compact and expressive
demonstration record for generating high-level, generalizable
workflows.

B. Task-level Workflow Generation

We designed a lightweight multi-agent system that takes
user interaction logs as input and outputs a structured workflow
in JSON format. The system consists of four agents: the
action agent, the context agent, the synthesizer agent, and
the evaluator agent. The action agent analyzes interaction
data and infers tool usage based on a predefined set of tools
commonly found in Model Context Protocal (MCP) and agent-
based applications. In parallel, the context agent analyzes
surrounding metadata (e.g., page content, element labels, UI
states) to infer user goals, interests, and intentions. The results
from both the action and context agents are then passed to the
synthesizer agent, which aligns them to generate a goal-driven,
abstracted workflow that captures both the intent and structure
of the user’s task. The evaluator agent subsequently scores the
workflow based on alignment quality and abstraction level,
considering factors such as the number of nodes and the
specificity of each prompt.

As the user continues interacting with the system, the
workflow dynamically evolves to reflect new actions and
intentions. While the generated workflow may not be perfect
at the beginning, it will progressively adapt to user intent and
task context as users engage with it more. Furthermore, if the
generated workflow does not meet the user’s expectations, the
user can directly refine by editing it via the interface.

Fig. 1: System overview of AgentPbD. User demonstrations
are collected as input for the multi-agent system, which
dynamically generates task workflows that can be reused and
generalized.

C. Interface

The UI for the generated workflow is shown in Fig. 2.
When the user is operating in the browswer, the visualiza-
tion of workflow will be displayed in the side panel. Each
node represents a configurable LLM operation including the
description, prompt, and tools. Edges between nodes indicate
data flow or logical dependencies. By observing the work-
flow visualization, users can easily understand and grasp the
functionality and intent of the workflow at the task level.
Users have full control over the generated workflow: they can
manually add new nodes on the existing graph, modify node
configurations such as prompts, reconnect the nodes, or delete
existing nodes or edges. Finally, as the user feels satisfied,
they can encapsulate and save the entire workflow as a JSON
file for future use.

IV. PRESENTATION AND IMPLICATIONS

We will showcase AgentPbD through an interactive live
demonstration along with a poster during the conference.
Attendees will have the opportunity to interact directly with
AgentPbD, experiencing how workflow can be generated from
demonstrations. This work explores user intentions embedded
in actions, using task-level workflows as the core representa-
tion. As the next step, we are going to support the execution of
workflows and conduct a user study to evaluate the system’s
usability and to understand user preferences and behaviors
when using the system.
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APPENDIX

Fig. 2: The UI of AgentPbD. (A) Users can edit the prompt of the node agent. (B) Users can add and define a new node agent
into the workflow. (C) Users can delete and reconstruct the workflow logic.


